THE AMERICAN KENNEL CLUB

Research Pedigree - 5 Generation Golden Star Riley Parker

Name: Golden Star Riley Parker AKC #: SS384215/01 04-24 Birth Date: 11/08/2022 Colors/Markings: Light Golden Breeder(s): Aden N Hershberger

Breed/Variety: Golden Retriever

Sex: Male

	1	1	1	1	1
Golden Star Riley Parker SS384215/01 04-24 Light Golden		Zlatomir Zachetniy Paren SR935356/03 08-17 (Russia) Golden OFA26G OFEL26 AKC DNA #V825354	Rus Pekos Sky Jasper RKF 3398724 06-16 (Russia)	Bungee Jumping Of The Famous Family RKF 2596212 04-11 (Hungary) Golden	Ashbury Angel Heart LOF 8RET.GOL.064360/08908
					Dewmist Star Of The Blue Hope MET GOLDRET.7799/H/06
				Shamrock Vivienne Westwood SR808635/01 05-14 (Hungary) Light Golden AKC DNA #V720536	Ralun Versace ANKC 6100041864
					Dewmist Serendica MET GOLD.R.7477/H/06
				Rus Pekos Derbi RKF 2949347	Gordon The Dream Team SR658715/01 08-11 (Slovak Republic) Golden AKC DNA #V622751
			Darina RKF 3376163		Ornetta More Mia RKF 2357799
	Rus Ukr Riley			Avrora Boginya Utrenney Zari RKF 2844754	Sansibiliti Sweet William RKF 1630702
	SS131995/08 02-21 Light Golden OFA44G OFEL44 AKC DNA				Stenveyz Magnolia RKF 1693048
	#V980829	Tramin May Rose SR987556/01 10-17 (Ukraine) Light Golden AKC DNA #V821528	Tramin De Bon Matin CGC SR896279/01 03-16 (Ukraine) Golden AKC DNA #V769674	Remington Ringmaster LOF 052705/07006	Ritzilyn Brandon KCSB 2903CL
					Remington Remember Me KCSB 0269CL
				Tramin Keep Love Together UKU 0063481	Tramin Magellan UKU 0006315
					Tramin Lovestory TUKU 0000700
			Tramin Kena Koer TUKU 0167729	My Little Friend Sherlock LOE 2079395	Lucky-Man De Ria Vela LOE 1452692
					My Little Friend Sally Time LOE 1853147
				Goldenirbis Koritsa SR810951/01 07-14 (Russia) Golden AKC DNA #V726772	Solstrimmans Dream Contract RKF 2635966
					Solstrimmans Twice As Nice RKF 2393215
	Light Golden	White Ridge Tye SS01313604 01-19 Light Golden AKC DNA #V875539	Frank Whitee SR952835/04 01-18 Light Golden AKC DNA #V903328	White Diamonds Seager SR870183/04 01-17 Light Golden AKC DNA #V839297	White Diamonds Maxx SR811237/02 07-15 Light Golden OFEL25 AKC DNA #V769595
					Snow White Mya SR807078/02 07-15 Light Golden
				Miller's Sophie SR868141/1001-17 Light Golden	Mast's Judah English Cream SR736493/10 04-14 Light Golden None OFEL AKC DNA #V731017
					Mast's Sophie SR759627/02 06-14 Light Golden

		Goldvill Polar Star SR715051/01 10-12 (Russia)	Tramin High Force RKF 2053944	
		<u>Nisley's Sophie</u> SR928934/01 01-18 Light Golden	Light Golden AKC DNA #V671359	Tramin Cada Loco Con Su Tema RKF 2481401
			M-M Mistys Cheyenne SR836048/03 11-15 Light Golden	Jake Of Finding Tine Goldens SR745392/03 01-14 Light Golden AKC DNA #V692292
				Miller's Misty III SR686435/01 10-14 Light Golden
		Montego Stand And Deliver SR764633/01 12-14 (Australia) Light Golden OFA24G OFEL24 AKC DNA #V738930	Inniscroft Keep The Faith NZKC 02865-2006 07-16	Goldtreve Gamekeeper ANKC 1122756
				Montego Vanity Fair ANKC 1132101653312
			Brackendell Diamond Lace ANKC 5100042588	Montego Mity Classy ANKC 2100087776
	Superior White Rose Delivers			Montego As You Dream ANKC 2100173597
	SR929762/02 04-18 Light Golden		Brend Goda Iz Stolitsy Urala CGCA CGCU SR686567/01 02-12 (Russia) Light Golden AKC DNA #V644357	All My Dream In Famous Family RKF 2233851 03-10
		Lilly White Of Heartstrings SR723373/03 07-14 Light Golden OFA34G		Uletnaya Krasotka Iz Stolitsy Urala RKF 2257379
ļ l			Ada From Reedy Gold SR625428/02 07-12 (Hungary)	Dewmist Sandoliano MET GOLD.R.8432/H/07
			Light Golden OFA27G AKC DNA #V622950	Daniella From Mariannehouse MET GOLD.R.8080/06

2024 American Kennel Club

© 2024 All rights reserved. No material may be reproduced in any manner whatsoever without written permission from The American Kennel Club, Inc. The AKC has made every effort to insure the accuracy of its information. The information provided is "as is" with all faults and without warranty of any kind, expressed or implied. In no event shall American Kennel Club be liable for any incidental or consequential damages, lost profits, or any indirect damages even if AKC has been informed of the possibility thereof.

embk.me/parker1255

BREED ANCESTRY

Golden Retriever : 100.0%

GENETIC STATS

Predicted adult weight: 64 lbs

TEST DETAILS

Kit number: EM-19745156 Swab number: 31220412303955

Fun Fact

A Golden Retriever is also pictured in the Guinness Book of World's Records for "Most tennis balls held in mouth" (with 6).

embk.me/parker1255

GOLDEN RETRIEVER

The Golden Retriever was developed in the early 19th century as an ideal hunting companion, able to retrieve birds on both land and water in the marshy Scottish countryside. Their friendliness and intelligence makes the both a popular family pet and an excellent working dog, well suited for being a service dog, therapy dog or for search and rescue. The third most popular breed in the US, the American and Canadian Goldens are generally lankier and darker than their British counterparts. Their wavy, feathered topcoat is water resistant, their undercoat helps them with thermoregulation and both coats have a tendency for heavy seasonal shedding. Goldens need lots of exercise (especially when younger), and their love of play and water means their owners usually get a lot of exercise too! In 2013, the 100th anniversary of Britain's Golden Retriever Club, Goldens from around the world came made the pilgrimage to the breed's birthplace in Scotland, where 222 of them posed in a single record-breaking photo. At the same time, the Golden Retriever Lifetime Study was getting started in the United States, recruiting 3,000 Golden Retrievers for a lifetime study aimed at understanding how genetics, lifestyle and environment influences healthy aging and cancer risk in Goldens.

Test Date: May 12th, 2023

embk.me/parker1255

MATERNAL LINE

Through Parker's mitochondrial DNA we can trace his mother's ancestry back to where dogs and people first became friends. This map helps you visualize the routes that his ancestors took to your home. Their story is described below the map.

HAPLOGROUP: A1a

A1a is the most common maternal lineage among Western dogs. This lineage traveled from the site of dog domestication in Central Asia to Europe along with an early dog expansion perhaps 10,000 years ago. It hung around in European village dogs for many millennia. Then, about 300 years ago, some of the prized females in the line were chosen as the founding dogs for several dog breeds. That set in motion a huge expansion of this lineage. It's now the maternal lineage of the overwhelming majority of Mastiffs, Labrador Retrievers and Gordon Setters. About half of Boxers and less than half of Shar-Pei dogs descend from the A1a line. It is also common across the world among village dogs, a legacy of European colonialism.

HAPLOTYPE: A382

Part of the large A1a haplogroup, this haplotype occurs most frequently in Labrador Retrievers, Golden Retrievers, and Chesapeake Bay Retrievers.

Test Date: May 12th, 2023

embk.me/parker1255

PATERNAL LINE

Through Parker's Y chromosome we can trace his father's ancestry back to where dogs and people first became friends. This map helps you visualize the routes that his ancestors took to your home. Their story is described below the map.

HAPLOGROUP: A1a

Some of the wolves that became the original dogs in Central Asia around 15,000 years ago came from this long and distinguished line of male dogs. After domestication, they followed their humans from Asia to Europe and then didn't stop there. They took root in Europe, eventually becoming the dogs that founded the Vizsla breed 1,000 years ago. The Vizsla is a Central European hunting dog, and all male Vizslas descend from this line. During the Age of Exploration, like their owners, these pooches went by the philosophy, "Have sail, will travel!" From the windy plains of Patagonia to the snug and homey towns of the American Midwest, the beaches of a Pacific paradise, and the broad expanse of the Australian outback, these dogs followed their masters to the outposts of empires. Whether through good fortune or superior genetics, dogs from the A1a lineage traveled the globe and took root across the world. Now you find village dogs from this line frolicking on Polynesian beaches, hanging out in villages across the **Registration: American Kennel Club**

HAPLOTYPE: H1a.53

Part of the A1a haplogroup, this haplotype occurs most frequently in Golden Retrievers, Border Collies, and the Coton de Tulear.

Test Date: May 12th, 2023

embk.me/parker1255

RESULT

TRAITS: COAT COLOR

TRAIT

E Locus (MC1R)

The E Locus determines if and where a dog can produce dark (black or brown) hair. Dogs with two copies of the recessive **e** allele do not produce dark hairs at all, and will be "red" over their entire body. The shade of red, which can range from a deep copper to yellow/gold to cream, is dependent on other genetic factors including the Intensity loci. In addition to determining if a dog can develop dark hairs at all, the E Locus can give a dog a black "mask" or "widow's peak," unless the dog has overriding coat color genetic factors. Dogs with one or two copies of the **Em** allele usually have a melanistic mask (dark facial hair as commonly seen in the German Shepherd and Pug). Dogs with no copies of **Em** but one or two copies of the **Eg** allele usually have a melanistic "widow's peak" (dark forehead hair as commonly seen in the Afghan Hound and Borzoi, where it is called either "grizzle" or "domino").

No dark hairs anywhere (ee)

K Locus (CBD103)

The K Locus **K**^B allele "overrides" the A Locus, meaning that it prevents the A Locus genotype from affecting coat color. For this reason, the **K**^B allele is referred to as the "dominant black" allele. As a result, dogs with at least one **K**^B allele will usually have solid black or brown coats (or red/cream coats if they are **ee** at the E Locus) regardless of their genotype at the A Locus, although several other genes could impact the dog's coat and cause other patterns, such as white spotting. Dogs with the **k**^y**k**^y genotype will show a coat color pattern based on the genotype they have at the A Locus. Dogs who test as **K**^B**k**^y may be brindle rather than black or brown.

Not expressed (K^BK^B)

¦ Hembark

embk.me/parker1255

RESULT

TRAITS: COAT COLOR (CONTINUED)

TRAIT

Intensity Loci LINKAGE

Areas of a dog's coat where dark (black or brown) pigment is not expressed either contain red/yellow pigment, or no pigment at all. Five locations across five chromosomes explain approximately 70% of red pigmentation "intensity" variation across all dogs. Dogs with a result of **Intense Red Pigmentation** will likely have deep red hair like an Irish Setter or "apricot" hair like some Poodles, dogs with a result of **Intermediate Red Pigmentation** will likely have tan or yellow hair like a Soft-Coated Wheaten Terrier, and dogs with **Dilute Red Pigmentation** will likely have cream or white hair like a Samoyed. Because the mutations we test may not directly cause differences in red pigmentation intensity, we consider this to be a linkage test.

Any pigmented hair likely white or cream (Dilute Red Pigmentation)

A Locus (ASIP)

The A Locus controls switching between black and red pigment in hair cells, but it will only be expressed in dogs that are not **ee** at the E Locus and are **k**^y**k**^y at the K Locus. Sable (also called "Fawn") dogs have a mostly or entirely red coat with some interspersed black hairs. Agouti (also called "Wolf Sable") dogs have red hairs with black tips, mostly on their head and back. Black and tan dogs are mostly black or brown with lighter patches on their cheeks, eyebrows, chest, and legs. Recessive black dogs have solid-colored black or brown coats.

D Locus (MLPH)

The D locus result that we report is determined by three different genetic variants that can work together to cause diluted pigmentation. These are the common **d** allele, also known as "**d1**", and the less common alleles known as "**d2**" and "**d3**". Dogs with two **d** alleles, regardless of which variant, will have all black pigment lightened ("diluted") to gray, or brown pigment lightened to lighter brown in their hair, skin, and sometimes eyes. There are many breed-specific names for these dilute colors, such as "blue", "charcoal", "fawn", "silver", and "Isabella". Note that in certain breeds, dilute dogs have a higher incidence of Color Dilution Alopecia. Dogs with one **d** allele will not be dilute, but can pass the **d** allele on to their puppies.

Not expressed (a^ta^t)

Not expressed (DD)

embk.me/parker1255

RESULT

TRAITS: COAT COLOR (CONTINUED)

TRAIT

Cocoa (HPS3)

Dogs with the coco genotype will produce dark brown pigment instead of black in both their hair and skin.No co alleles, notDogs with the Nco genotype will produce black pigment, but can pass the co allele on to their puppies.expressed (NN)Dogs that have the coco genotype as well as the bb genotype at the B locus are generally a lighter brownthan dogs that have the Bb or BB genotypes at the B locus.

B Locus (TYRP1)

Dogs with two copies of the **b** allele produce brown pigment instead of black in both their hair and skin. Dogs with one copy of the **b** allele will produce black pigment, but can pass the **b** allele on to their puppies. E Locus **ee** dogs that carry two **b** alleles will have red or cream coats, but have brown noses, eye rims, and footpads (sometimes referred to as "Dudley Nose" in Labrador Retrievers). "Liver" or "chocolate" is the preferred color term for brown in most breeds; in the Doberman Pinscher it is referred to as "red".

Likely black colored nose/feet (BB)

Saddle Tan (RALY)

The "Saddle Tan" pattern causes the black hairs to recede into a "saddle" shape on the back, leaving a tan face, legs, and belly, as a dog ages. The Saddle Tan pattern is characteristic of breeds like the Corgi, Beagle, and German Shepherd. Dogs that have the **II** genotype at this locus are more likely to be mostly black with tan points on the eyebrows, muzzle, and legs as commonly seen in the Doberman Pinscher and the Rottweiler. This gene modifies the A Locus **a**^t allele, so dogs that do not express **a**^t are not influenced by this gene.

Not expressed (NI)

S Locus (MITF)

The S Locus determines white spotting and pigment distribution. MITF controls where pigment is produced, and an insertion in the MITF gene causes a loss of pigment in the coat and skin, resulting in white hair and/or pink skin. Dogs with two copies of this variant will likely have breed-dependent white patterning, with a nearly white, parti, or piebald coat. Dogs with one copy of this variant will have more limited white spotting and may be considered flash, parti or piebald. This MITF variant does not explain all white spotting patterns in dogs and other variants are currently being researched. Some dogs may have small amounts of white on the paws, chest, face, or tail regardless of their S Locus genotype.

Likely to have little to no white in coat (SS)

Registration:

embk.me/parker1255

No merle alleles (mm)

RESULT

TRAITS: COAT COLOR (CONTINUED)

TRAIT

M Locus (PMEL)

Merle coat patterning is common to several dog breeds including the Australian Shepherd, Catahoula Leopard Dog, and Shetland Sheepdog, among many others. Merle arises from an unstable SINE insertion (which we term the "M*" allele) that disrupts activity of the pigmentary gene PMEL, leading to mottled or patchy coat color. Dogs with an **M*m** result are likely to be phenotypically merle or could be "non-expressing" merle, meaning that the merle pattern is very subtle or not at all evident in their coat. Dogs with an **M*M*** result are likely to be phenotypically merle. Dogs with an **mm** result have no merle alleles and are unlikely to have a merle coat pattern.

Note that Embark does not currently distinguish between the recently described cryptic, atypical, atypical+, classic, and harlequin merle alleles. Our merle test only detects the presence, but not the length of the SINE insertion. We do not recommend making breeding decisions on this result alone. Please pursue further testing for allelic distinction prior to breeding decisions.

R Locus (USH2A) LINKAGE

The R Locus regulates the presence or absence of the roan coat color pattern. Partial duplication of the USH2A gene is strongly associated with this coat pattern. Dogs with at least one **R** allele will likely have roaning on otherwise uniformly unpigmented white areas. Roan appears in white areas controlled by the S Locus but not in other white or cream areas created by other loci, such as the E Locus with **ee** along with Dilute Red Pigmentation by I Locus (for example, in Samoyeds). Mechanisms for controlling the extent of roaning are currently unknown, and roaning can appear in a uniform or non-uniform pattern. Further, non-uniform roaning may appear as ticked, and not obviously roan. The roan pattern can appear with or without ticking.

Likely no impact on coat pattern (rr)

H Locus (Harlequin)

This pattern is recognized in Great Danes and causes dogs to have a white coat with patches of darker pigment. A dog with an **Hh** result will be harlequin if they are also **M*m** or **M*M*** at the M Locus and are not **ee** at the E locus. Dogs with a result of **hh** will not be harlequin. This trait is thought to be homozygous lethal; a living dog with an **HH** genotype has never been found.

No harlequin alleles (hh)

embk.me/parker1255

TRAITS: OTHER COAT TRAITS

TRAIT

Furnishings (RSPO2) LINKAGE

Dogs with one or two copies of the **F** allele have "furnishings": the mustache, beard, and eyebrows characteristic of breeds like the Schnauzer, Scottish Terrier, and Wire Haired Dachshund. A dog with two **I** alleles will not have furnishings, which is sometimes called an "improper coat" in breeds where furnishings are part of the breed standard. The mutation is a genetic insertion which we measure indirectly using a linkage test highly correlated with the insertion.

Likely unfurnished (no mustache, beard, and/or eyebrows) (II)

RESULT

Coat Length (FGF5)

The FGF5 gene is known to affect hair length in many different species, including cats, dogs, mice, and humans. In dogs, the **T** allele confers a long, silky haircoat as observed in the Yorkshire Terrier and the Long Haired Whippet. The ancestral **G** allele causes a shorter coat as seen in the Boxer or the American Staffordshire Terrier. In certain breeds (such as Corgi), the long haircoat is described as "fluff."

Likely long coat (TT)

Shedding (MC5R)

Dogs with at least one copy of the ancestral C allele, like many Labradors and German Shepherd Dogs, are
heavy or seasonal shedders, while those with two copies of the T allele, including many Boxers, Shih Tzus
and Chihuahuas, tend to be lighter shedders. Dogs with furnished/wire-haired coats caused by RSPO2
(the furnishings gene) tend to be low shedders regardless of their genotype at this gene.Like
she

Coat Texture (KRT71)

Dogs with a long coat and at least one copy of the **T** allele have a wavy or curly coat characteristic of Poodles and Bichon Frises. Dogs with two copies of the ancestral **C** allele are likely to have a straight coat, but there are other factors that can cause a curly coat, for example if they at least one **F** allele for the Furnishings (RSPO2) gene then they are likely to have a curly coat. Dogs with short coats may carry one or two copies of the **T** allele but still have straight coats.

Likely heavy/seasonal shedding (CT)

Likely straight coat (CC)

Registration:

embk.me/parker1255

RESULT

TRAITS: OTHER COAT TRAITS (CONTINUED)

TRAIT

Hairlessness (FOXI3) LINKAGE

A duplication in the FOXI3 gene causes hairlessness over most of the body as well as changes in tooth shape and number. This mutation occurs in Peruvian Inca Orchid, Xoloitzcuintli (Mexican Hairless), and Chinese Crested (other hairless breeds have different mutations). Dogs with the **NDup** genotype are likely to be hairless while dogs with the **NN** genotype are likely to have a normal coat. The **DupDup** genotype has never been observed, suggesting that dogs with that genotype cannot survive to birth. Please note that this is a linkage test, so it may not be as predictive as direct tests of the mutation in some lines.

Hairlessness (SGK3)

Hairlessness in the American Hairless Terrier arises from a mutation in the SGK3 gene. Dogs with the DD result are likely to be hairless. Dogs with the ND genotype will have a normal coat, but can pass the D variant on to their offspring.

Oculocutaneous Albinism Type 2 (SLC45A2) LINKAGE

Dogs with two copies **DD** of this deletion in the SLC45A2 gene have oculocutaneous albinism (OCA), also known as Doberman Z Factor Albinism, a recessive condition characterized by severely reduced or absent pigment in the eyes, skin, and hair. Affected dogs sometimes suffer from vision problems due to lack of eye pigment (which helps direct and absorb ambient light) and are prone to sunburn. Dogs with a single copy of the deletion **ND** will not be affected but can pass the mutation on to their offspring. This particular mutation can be traced back to a single white Doberman Pinscher born in 1976, and it has only been observed in dogs descended from this individual. Please note that this is a linkage test, so it may not be as predictive as direct tests of the mutation in some lines.

Very unlikely to be hairless (NN)

Very unlikely to be hairless (NN)

Likely not albino (NN)

embk.me/parker1255

RESULT

TRAITS: OTHER BODY FEATURES

TRAIT

Muzzle Length (BMP3)

Dogs in medium-length muzzle (mesocephalic) breeds like Staffordshire Terriers and Labradors, and long muzzle (dolichocephalic) breeds like Whippet and Collie have one, or more commonly two, copies of the ancestral **C** allele. Dogs in many short-length muzzle (brachycephalic) breeds such as the English Bulldog, Pug, and Pekingese have two copies of the derived **A** allele. At least five different genes affect muzzle length in dogs, with BMP3 being the only one with a known causal mutation. For example, the skull shape of some breeds, including the dolichocephalic Scottish Terrier or the brachycephalic Japanese Chin, appear to be caused by other genes. Thus, dogs may have short or long muzzles due to other genetic factors that are not yet known to science.

Likely medium or long muzzle (CC)

Tail Length (T)

Whereas most dogs have two **C** alleles and a long tail, dogs with one **G** allele are likely to have a bobtail, which is an unusually short or absent tail. This mutation causes natural bobtail in many breeds including the Pembroke Welsh Corgi, the Australian Shepherd, and the Brittany Spaniel. Dogs with **GG** genotypes have not been observed, suggesting that dogs with the **GG** genotype do not survive to birth. Please note that this mutation does not explain every natural bobtail! While certain lineages of Boston Terrier, English Bulldog, Rottweiler, Miniature Schnauzer, Cavalier King Charles Spaniel, and Parson Russell Terrier, and Dobermans are born with a natural bobtail, these breeds do not have this mutation. This suggests that other unknown genetic mutations can also lead to a natural bobtail.

Hind Dewclaws (LMBR1)

Common in certain breeds such as the Saint Bernard, hind dewclaws are extra, nonfunctional digits located midway between a dog's paw and hock. Dogs with at least one copy of the **T** allele have about a 50% chance of having hind dewclaws. Note that other (currently unknown to science) mutations can also cause hind dewclaws, so some **CC** or **TC** dogs will have hind dewclaws.

Likely normal-length tail (CC)

Unlikely to have hind dew claws (CC)

Registration:

embk.me/parker1255

RESULT

TRAITS: OTHER BODY FEATURES (CONTINUED)

TRAIT

Blue Eye Color (ALX4) LINKAGE

Embark researchers discovered this large duplication associated with blue eyes in Arctic breeds like Siberian Husky as well as tri-colored (non-merle) Australian Shepherds. Dogs with at least one copy of the duplication (**Dup**) are more likely to have at least one blue eye. Some dogs with the duplication may have only one blue eye (complete heterochromia) or may not have blue eyes at all; nevertheless, they can still pass the duplication and the trait to their offspring. **NN** dogs do not carry this duplication, but may have blue eyes due to other factors, such as merle. Please note that this is a linkage test, so it may not be as predictive as direct tests of the mutation in some lines.

Less likely to have blue eyes (NN)

Back Muscling & Bulk, Large Breed (ACSL4)

The **T** allele is associated with heavy muscling along the back and trunk in characteristically "bulky" largebreed dogs including the Saint Bernard, Bernese Mountain Dog, Greater Swiss Mountain Dog, and Rottweiler. The "bulky" **T** allele is absent from leaner shaped large breed dogs like the Great Dane, Irish Wolfhound, and Scottish Deerhound, which are fixed for the ancestral **C** allele. Note that this mutation does not seem to affect muscling in small or even mid-sized dog breeds with notable back muscling, including the American Staffordshire Terrier, Boston Terrier, and the English Bulldog.

Likely normal muscling (CC)

DNA Test Report	Test Date: May 12th, 2023	embk.me/parker1255
TRAITS: BODY SIZE		
TRAIT		RESULT
Body Size (IGF1)		
The I allele is associated with smaller boo	dy size.	Larger (NN)
Body Size (IGFR1)		Larger (GG)
The A allele is associated with smaller bo	dy size.	Larger (00)
Body Size (STC2)		
The A allele is associated with smaller bo	dy size.	Larger (TT)
Body Size (GHR - E191K)		
The A allele is associated with smaller bo	dy size.	Smaller (AA)
Body Size (GHR - P177L)		
The T allele is associated with smaller bo	dy size.	Larger (CC)

Test Date: May 12th, 2023

embk.me/parker1255

RESULT

TRAITS: PERFORMANCE

TRAIT

Altitude Adaptation (EPAS1)

This mutation causes dogs to be especially tolerant of low oxygen environments (hypoxia), such as those found at high elevations. Dogs with at least one **A** allele are less susceptible to "altitude sickness." This mutation was originally identified in breeds from high altitude areas such as the Tibetan Mastiff.

Appetite (POMC) LINKAGE

This mutation in the POMC gene is found primarily in Labrador and Flat Coated Retrievers. Compared to dogs with no copies of the mutation (NN), dogs with one (ND) or two (DD) copies of the mutation are more likely to have high food motivation, which can cause them to eat excessively, have higher body fat motivation (NN) percentage, and be more prone to obesity. Read more about the genetics of POMC, and learn how you can contribute to research, in our blog post (https://embarkvet.com/resources/blog/pomc-dogs/). We measure this result using a linkage test.

Test Date: May 12th, 2023

embk.me/parker1255

HEALTH REPORT

How to interpret Parker's genetic health results:

If Parker inherited any of the variants that we tested, they will be listed at the top of the Health Report section, along with a description of how to interpret this result. We also include all of the variants that we tested Parker for that we did not detect the risk variant for.

A genetic test is not a diagnosis

This genetic test does not diagnose a disease. Please talk to your vet about your dog's genetic results, or if you think that your pet may have a health condition or disease.

Summary

Parker is not at increased risk for the genetic health conditions that Embark tests.

Clear results

Breed-relevant (11)

Other (244)

Test Date: May 12th, 2023

embk.me/parker1255

BREED-RELEVANT RESULTS

Research studies indicate that these results are more relevant to dogs like Parker, and may influence his chances of developing certain health conditions.

Congenital Myasthenic Syndrome, CMS (COLQ, Golden Retriever Variant)	Clear
O Degenerative Myelopathy, DM (SOD1A)	Clear
Opstrophic Epidermolysis Bullosa (COL7A1, Golden Retriever Variant)	Clear
Golden Retriever Progressive Retinal Atrophy 1, GR-PRA1 (SLC4A3)	Clear
Golden Retriever Progressive Retinal Atrophy 2, GR-PRA2 (TTC8)	Clear
Ichthyosis, ICH1 (PNPLA1, Golden Retriever Variant)	Clear
Muscular Dystrophy (DMD, Golden Retriever Variant)	Clear
Neuronal Ceroid Lipofuscinosis 5, NCL 5 (CLN5 Exon 4 Deletion, Golden Retriever Variant)	Clear
Osteogenesis Imperfecta (COL1A1, Golden Retriever Variant)	Clear
Progressive Retinal Atrophy, prcd (PRCD Exon 1)	Clear
Retina Dysplasia and/or Optic Nerve Hypoplasia (SIX6 Exon 1, Golden Retriever Variant)	Clear

Registration: American Kennel Club (AKC)

Test Date: May 12th, 2023

embk.me/parker1255

OTHER RESULTS

Research has not yet linked these conditions to dogs with similar breeds to Parker. Review any increased risk or notable results to understand his potential risk and recommendations.

2-DHA Kidney & Bladder Stones (APRT)	Clear
Acral Mutilation Syndrome (GDNF-AS, Spaniel and Pointer Variant)	Clear
Alaskan Husky Encephalopathy (SLC19A3)	Clear
Alaskan Malamute Polyneuropathy, AMPN (NDRG1 SNP)	Clear
Alexander Disease (GFAP)	Clear
ALT Activity (GPT)	Clear
Anhidrotic Ectodermal Dysplasia (EDA Intron 8)	Clear
Autosomal Dominant Progressive Retinal Atrophy (RHO)	Clear
Bald Thigh Syndrome (IGFBP5)	Clear
Bernard-Soulier Syndrome, BSS (GP9, Cocker Spaniel Variant)	Clear
Bully Whippet Syndrome (MSTN)	Clear
Canine Elliptocytosis (SPTB Exon 30)	Clear
Canine Fucosidosis (FUCA1)	Clear
Canine Leukocyte Adhesion Deficiency Type I, CLAD I (ITGB2, Setter Variant)	Clear
Canine Leukocyte Adhesion Deficiency Type III, CLAD III (FERMT3, German Shepherd Variant)	Clear
Canine Multifocal Retinopathy, cmr1 (BEST1 Exon 2)	Clear
Canine Multifocal Retinopathy, cmr2 (BEST1 Exon 5, Coton de Tulear Variant)	Clear
Canine Multifocal Retinopathy, cmr3 (BEST1 Exon 10 Deletion, Finnish and Swedish Lapphund, Lapponian Herder Variant)	Clear

DNA Test Report

Test Date: May 12th, 2023

embk.me/parker1255

OTHER RESULTS

Canine Multiple System Degeneration (SERAC1 Exon 4, Chinese Crested Variant)	Clear
Canine Multiple System Degeneration (SERAC1 Exon 15, Kerry Blue Terrier Variant)	Clear
Cardiomyopathy and Juvenile Mortality (YARS2)	Clear
Centronuclear Myopathy, CNM (PTPLA)	Clear
Cerebellar Hypoplasia (VLDLR, Eurasier Variant)	Clear
Chondrodystrophy (ITGA10, Norwegian Elkhound and Karelian Bear Dog Variant)	Clear
Cleft Lip and/or Cleft Palate (ADAMTS20, Nova Scotia Duck Tolling Retriever Variant)	Clear
Cleft Palate, CP1 (DLX6 intron 2, Nova Scotia Duck Tolling Retriever Variant)	Clear
Cobalamin Malabsorption (CUBN Exon 8, Beagle Variant)	Clear
Cobalamin Malabsorption (CUBN Exon 53, Border Collie Variant)	Clear
Collie Eye Anomaly (NHEJ1)	Clear
Complement 3 Deficiency, C3 Deficiency (C3)	Clear
Congenital Cornification Disorder (NSDHL, Chihuahua Variant)	Clear
Congenital Hypothyroidism (TPO, Rat, Toy, Hairless Terrier Variant)	Clear
Congenital Hypothyroidism (TPO, Tenterfield Terrier Variant)	Clear
Congenital Hypothyroidism with Goiter (TPO Intron 13, French Bulldog Variant)	Clear
Congenital Hypothyroidism with Goiter (SLC5A5, Shih Tzu Variant)	Clear
Congenital Macrothrombocytopenia (TUBB1 Exon 1, Cairn and Norfolk Terrier Variant)	Clear

Registration: American Kennel Club (AKC)

DNA Test Report	Test Date: May 12th, 2023	embk.me/parker1255
OTHER RESULTS		
Ongenital Myasthenic Syndrome, CMS (COLO	Q, Labrador Retriever Variant)	Clear
Ongenital Myasthenic Syndrome, CMS (CHA	r, Old Danish Pointing Dog Variant)	Clear
Ongenital Myasthenic Syndrome, CMS (CHR	NE, Jack Russell Terrier Variant)	Clear
Ongenital Stationary Night Blindness (LRIT3	,Beagle Variant)	Clear
Ongenital Stationary Night Blindness (RPE6)	5, Briard Variant)	Clear
Craniomandibular Osteopathy, CMO (SLC37A2	2)	Clear
Craniomandibular Osteopathy, CMO (SLC37A2	2 Intron 16, Basset Hound Variant)	Clear
🔗 Cystinuria Type I-A (SLC3A1, Newfoundland V	ariant)	Clear
Oystinuria Type II-A (SLC3A1, Australian Cattle	e Dog Variant)	Clear
Oystinuria Type II-B (SLC7A9, Miniature Pinsc	her Variant)	Clear
Oay Blindness (CNGB3 Deletion, Alaskan Mala	amute Variant)	Clear
Oay Blindness (CNGA3 Exon 7, German Sheph	erd Variant)	Clear
Oay Blindness (CNGA3 Exon 7, Labrador Retrie	ever Variant)	Clear
Oay Blindness (CNGB3 Exon 6, German Shortl	naired Pointer Variant)	Clear
Deafness and Vestibular Syndrome of Dobern	nans, DVDob, DINGS (MYO7A)	Clear
Oemyelinating Polyneuropathy (SBF2/MTRM1	3)	Clear
Oental-Skeletal-Retinal Anomaly (MIA3, Cane	Corso Variant)	Clear
Diffuse Cystic Renal Dysplasia and Hepatic Fi	brosis (INPP5E Intron 9, Norwich Terrier Variant)	Clear

Registration: American Kennel Club (AKC)

DNA Test Report	Test Date: May 12th, 2023	embk.me/parker1255
OTHER RESULTS		
Dilated Cardiomyopathy, DCM	(RBM20, Schnauzer Variant)	Clear
O Dilated Cardiomyopathy, DCM	1 (PDK4, Doberman Pinscher Variant 1)	Clear
O Dilated Cardiomyopathy, DCM	2 (TTN, Doberman Pinscher Variant 2)	Clear
O Disproportionate Dwarfism (P	RKG2, Dogo Argentino Variant)	Clear
Ory Eye Curly Coat Syndrome	(FAM83H Exon 5)	Clear
Oystrophic Epidermolysis Bul	losa (COL7A1, Central Asian Shepherd Dog Variant)	Clear
Early Bilateral Deafness (LOX	HD1 Exon 38, Rottweiler Variant)	Clear
Early Onset Adult Deafness, E	OAD (EPS8L2 Deletion, Rhodesian Ridgeback Variant)	Clear
Early Onset Cerebellar Ataxia	(SEL1L, Finnish Hound Variant)	Clear
Ehlers Danlos (ADAMTS2, Dob	berman Pinscher Variant)	Clear
Enamel Hypoplasia (ENAM De	eletion, Italian Greyhound Variant)	Clear
Enamel Hypoplasia (ENAM SN	IP, Parson Russell Terrier Variant)	Clear
Episodic Falling Syndrome (B	CAN)	Clear
Exercise-Induced Collapse, E	IC (DNM1)	Clear
Sector VII Deficiency (F7 Exor	n 5)	Clear
Sector XI Deficiency (F11 Exor	n 7, Kerry Blue Terrier Variant)	Clear
Samilial Nephropathy (COL4A	4 Exon 3, Cocker Spaniel Variant)	Clear
Samilial Nephropathy (COL4A	4 Exon 30, English Springer Spaniel Variant)	Clear

Registration: American Kennel Club (AKC)

DNA Test Report

Test Date: May 12th, 2023

embk.me/parker1255

OTHER RESULTS

Fanconi Syndrome (FAN1, Basenji Variant)	Clear
S Fetal-Onset Neonatal Neuroaxonal Dystrophy (MFN2, Giant Schnauzer Variant)	Clear
Glanzmann's Thrombasthenia Type I (ITGA2B Exon 13, Great Pyrenees Variant)	Clear
Glanzmann's Thrombasthenia Type I (ITGA2B Exon 12, Otterhound Variant)	Clear
Globoid Cell Leukodystrophy, Krabbe disease (GALC Exon 5, Terrier Variant)	Clear
Glycogen Storage Disease Type IA, Von Gierke Disease, GSD IA (G6PC, Maltese Variant)	Clear
Glycogen Storage Disease Type IIIA, GSD IIIA (AGL, Curly Coated Retriever Variant)	Clear
Glycogen storage disease Type VII, Phosphofructokinase Deficiency, PFK Deficiency (PFKM, Whippet and English Springer Spaniel Variant)	Clear
 Glycogen storage disease Type VII, Phosphofructokinase Deficiency, PFK Deficiency (PFKM, Wachtelhund Variant) 	Clear
GM1 Gangliosidosis (GLB1 Exon 2, Portuguese Water Dog Variant)	Clear
GM1 Gangliosidosis (GLB1 Exon 15, Shiba Inu Variant)	Clear
🧭 GM1 Gangliosidosis (GLB1 Exon 15, Alaskan Husky Variant)	Clear
GM2 Gangliosidosis (HEXA, Japanese Chin Variant)	Clear
GM2 Gangliosidosis (HEXB, Poodle Variant)	Clear
Goniodysgenesis and Glaucoma, Pectinate Ligament Dysplasia, PLD (OLFM3)	Clear
Hemophilia A (F8 Exon 11, German Shepherd Variant 1)	Clear
Hemophilia A (F8 Exon 1, German Shepherd Variant 2)	Clear
Hemophilia A (F8 Exon 10, Boxer Variant)	Clear

Registration: American Kennel Club (AKC)

DNA Test Report

Test Date: May 12th, 2023

embk.me/parker1255

OTHER RESULTS

Hemophilia B (F9 Exon 7, Terrier Variant)	Clear
Hemophilia B (F9 Exon 7, Rhodesian Ridgeback Variant)	Clear
Hereditary Ataxia, Cerebellar Degeneration (RAB24, Old English Sheepdog and Gordon Setter Variant)	Clear
Hereditary Cataracts (HSF4 Exon 9, Australian Shepherd Variant)	Clear
Hereditary Footpad Hyperkeratosis (FAM83G, Terrier and Kromfohrlander Variant)	Clear
Hereditary Footpad Hyperkeratosis (DSG1, Rottweiler Variant)	Clear
Hereditary Nasal Parakeratosis (SUV39H2 Intron 4, Greyhound Variant)	Clear
Hereditary Nasal Parakeratosis, HNPK (SUV39H2)	Clear
Hereditary Vitamin D-Resistant Rickets (VDR)	Clear
Hypocatalasia, Acatalasemia (CAT)	Clear
Hypomyelination and Tremors (FNIP2, Weimaraner Variant)	Clear
Hypophosphatasia (ALPL Exon 9, Karelian Bear Dog Variant)	Clear
Ichthyosis (NIPAL4, American Bulldog Variant)	Clear
Ichthyosis (ASPRV1 Exon 2, German Shepherd Variant)	Clear
Ichthyosis (SLC27A4, Great Dane Variant)	Clear
Ichthyosis, Epidermolytic Hyperkeratosis (KRT10, Terrier Variant)	Clear
Inflammatory Myopathy (SLC25A12)	Clear
Inherited Myopathy of Great Danes (BIN1)	Clear

Registration: American Kennel Club (AKC)

DNA Test Report

Test Date: May 12th, 2023

embk.me/parker1255

OTHER RESULTS

Inherited Selected Cobalamin Malabsorption with Proteinuria (CUBN, Komondor Variant)	Clear
Intervertebral Disc Disease (Type I) (FGF4 retrogene - CFA12)	Clear
Intestinal Lipid Malabsorption (ACSL5, Australian Kelpie)	Clear
S Junctional Epidermolysis Bullosa (LAMA3 Exon 66, Australian Cattle Dog Variant)	Clear
Junctional Epidermolysis Bullosa (LAMB3 Exon 11, Australian Shepherd Variant)	Clear
Juvenile Epilepsy (LGI2)	Clear
Juvenile Laryngeal Paralysis and Polyneuropathy (RAB3GAP1, Rottweiler Variant)	Clear
Juvenile Myoclonic Epilepsy (DIRAS1)	Clear
C L-2-Hydroxyglutaricaciduria, L2HGA (L2HGDH, Staffordshire Bull Terrier Variant)	Clear
Lagotto Storage Disease (ATG4D)	Clear
Laryngeal Paralysis (RAPGEF6, Miniature Bull Terrier Variant)	Clear
Late Onset Spinocerebellar Ataxia (CAPN1)	Clear
Late-Onset Neuronal Ceroid Lipofuscinosis, NCL 12 (ATP13A2, Australian Cattle Dog Variant)	Clear
Leonberger Polyneuropathy 1 (LPN1, ARHGEF10)	Clear
Control Leonberger Polyneuropathy 2 (GJA9)	Clear
Lethal Acrodermatitis, LAD (MKLN1)	Clear
Leukodystrophy (TSEN54 Exon 5, Standard Schnauzer Variant)	Clear
Ligneous Membranitis, LM (PLG)	Clear

Registration: American Kennel Club (AKC)

DNA Test Report	Test Date: May 12th, 2023	embk.me/parker1255
OTHER RESULTS		
C Limb Girdle Muscular Dystrophy (SGCD, Bost	on Terrier Variant)	Clear
SGCA E Limb-Girdle Muscular Dystrophy 2D (SGCA E	xon 3, Miniature Dachshund Variant)	Clear
O Long QT Syndrome (KCNQ1)		Clear
Sundehund Syndrome (LEPREL1)		Clear
Macular Corneal Dystrophy, MCD (CHST6)		Clear
Malignant Hyperthermia (RYR1)		Clear
May-Hegglin Anomaly (MYH9)		Clear
Methemoglobinemia (CYB5R3, Pit Bull Terrie	r Variant)	Clear
Methemoglobinemia (CYB5R3)		Clear
Microphthalmia (RBP4 Exon 2, Soft Coated V	Vheaten Terrier Variant)	Clear
Mucopolysaccharidosis IIIB, Sanfilippo Synd	rome Type B, MPS IIIB (NAGLU, Schipperke Variant)	Clear
Mucopolysaccharidosis Type IIIA, Sanfilippo Variant)	Syndrome Type A, MPS IIIA (SGSH Exon 6, Dachshund	Clear
Mucopolysaccharidosis Type IIIA, Sanfilippo Huntaway Variant)	Syndrome Type A, MPS IIIA (SGSH Exon 6, New Zealand	Clear
Mucopolysaccharidosis Type VI, Maroteaux- Variant)	Lamy Syndrome, MPS VI (ARSB Exon 5, Miniature Pinscher	Clear
Mucopolysaccharidosis Type VII, Sly Syndror	ne, MPS VII (GUSB Exon 3, German Shepherd Variant)	Clear
Mucopolysaccharidosis Type VII, Sly Syndror	ne, MPS VII (GUSB Exon 5, Terrier Brasileiro Variant)	Clear
Multiple Drug Sensitivity (ABCB1)		Clear
O Muscular Dystrophy (DMD, Cavalier King Cha	rles Spaniel Variant 1)	Clear

DNA Test Report

Test Date: May 12th, 2023

embk.me/parker1255

OTHER RESULTS

Musladin-Lueke Syndrome, MLS (ADAMTSL2)	Clear
Myasthenia Gravis-Like Syndrome (CHRNE, Heideterrier Variant)	Clear
Myotonia Congenita (CLCN1 Exon 23, Australian Cattle Dog Variant)	Clear
Myotonia Congenita (CLCN1 Exon 7, Miniature Schnauzer Variant)	Clear
Narcolepsy (HCRTR2 Exon 1, Dachshund Variant)	Clear
Narcolepsy (HCRTR2 Intron 4, Doberman Pinscher Variant)	Clear
Narcolepsy (HCRTR2 Intron 6, Labrador Retriever Variant)	Clear
Nemaline Myopathy (NEB, American Bulldog Variant)	Clear
Neonatal Cerebellar Cortical Degeneration (SPTBN2, Beagle Variant)	Clear
Neonatal Encephalopathy with Seizures, NEWS (ATF2)	Clear
Neonatal Interstitial Lung Disease (LAMP3)	Clear
Neuroaxonal Dystrophy, NAD (VPS11, Rottweiler Variant)	Clear
Neuroaxonal Dystrophy, NAD (TECPR2, Spanish Water Dog Variant)	Clear
Neuronal Ceroid Lipofuscinosis 1, NCL 1 (PPT1 Exon 8, Dachshund Variant 1)	Clear
Neuronal Ceroid Lipofuscinosis 10, NCL 10 (CTSD Exon 5, American Bulldog Variant)	Clear
Neuronal Ceroid Lipofuscinosis 2, NCL 2 (TPP1 Exon 4, Dachshund Variant 2)	Clear
Neuronal Ceroid Lipofuscinosis 5, NCL 5 (CLN5 Exon 4 SNP, Border Collie Variant)	Clear
Neuronal Ceroid Lipofuscinosis 6, NCL 6 (CLN6 Exon 7, Australian Shepherd Variant)	Clear

Registration: American Kennel Club (AKC)

DNA Test Report

Test Date: May 12th, 2023

embk.me/parker1255

OTHER RESULTS

Neuronal Ceroid Lipofuscinosis 7, NCL 7 (MFSD8, Chihuahua and Chinese Crested Variant)	Clear
Neuronal Ceroid Lipofuscinosis 8, NCL 8 (CLN8, Australian Shepherd Variant)	Clear
Neuronal Ceroid Lipofuscinosis 8, NCL 8 (CLN8 Exon 2, English Setter Variant)	Clear
Neuronal Ceroid Lipofuscinosis 8, NCL 8 (CLN8 Insertion, Saluki Variant)	Clear
Neuronal Ceroid Lipofuscinosis, Cerebellar Ataxia, NCL4A (ARSG Exon 2, American Staffordshire Terrier Variant)	Clear
Oculocutaneous Albinism, OCA (SLC45A2 Exon 6, Bullmastiff Variant)	Clear
Oculocutaneous Albinism, OCA (SLC45A2, Small Breed Variant)	Clear
Oculoskeletal Dysplasia 2 (COL9A2, Samoyed Variant)	Clear
Osteochondrodysplasia (SLC13A1, Poodle Variant)	Clear
Osteogenesis Imperfecta (COL1A2, Beagle Variant)	Clear
Osteogenesis Imperfecta (SERPINH1, Dachshund Variant)	Clear
P2Y12 Receptor Platelet Disorder (P2Y12)	Clear
Pachyonychia Congenita (KRT16, Dogue de Bordeaux Variant)	Clear
Paroxysmal Dyskinesia, PxD (PIGN)	Clear
Persistent Mullerian Duct Syndrome, PMDS (AMHR2)	Clear
Pituitary Dwarfism (POU1F1 Intron 4, Karelian Bear Dog Variant)	Clear
Platelet Factor X Receptor Deficiency, Scott Syndrome (TMEM16F)	Clear
Polycystic Kidney Disease, PKD (PKD1)	Clear

Registration: American Kennel Club (AKC)

DNA Test Report

Test Date: May 12th, 2023

embk.me/parker1255

OTHER RESULTS

Pompe's Disease (GAA, Finnish and Swedish Lapphund, Lapponian Herder Variant)	Clear
Prekallikrein Deficiency (KLKB1 Exon 8)	Clear
Primary Ciliary Dyskinesia, PCD (NME5, Alaskan Malamute Variant)	Clear
Primary Ciliary Dyskinesia, PCD (CCDC39 Exon 3, Old English Sheepdog Variant)	Clear
Primary Hyperoxaluria (AGXT)	Clear
Primary Lens Luxation (ADAMTS17)	Clear
Primary Open Angle Glaucoma (ADAMTS17 Exon 11, Basset Fauve de Bretagne Variant)	Clear
Primary Open Angle Glaucoma (ADAMTS10 Exon 17, Beagle Variant)	Clear
Primary Open Angle Glaucoma (ADAMTS10 Exon 9, Norwegian Elkhound Variant)	Clear
 Primary Open Angle Glaucoma and Primary Lens Luxation (ADAMTS17 Exon 2, Chinese Shar-Pei Variant) 	Clear
Progressive Retinal Atrophy (SAG)	Clear
Progressive Retinal Atrophy (IFT122 Exon 26, Lapponian Herder Variant)	Clear
Progressive Retinal Atrophy, Bardet-Biedl Syndrome (BBS2 Exon 11, Shetland Sheepdog Variant)	Clear
Progressive Retinal Atrophy, CNGA (CNGA1 Exon 9)	Clear
Progressive Retinal Atrophy, crd1 (PDE6B, American Staffordshire Terrier Variant)	Clear
Progressive Retinal Atrophy, crd4/cord1 (RPGRIP1)	Clear
Progressive Retinal Atrophy, PRA1 (CNGB1)	Clear
Progressive Retinal Atrophy, PRA3 (FAM161A)	Clear

Registration: American Kennel Club (AKC)

DNA Test Report

Test Date: May 12th, 2023

embk.me/parker1255

OTHER RESULTS

Progressive Retinal Atrophy, rcd1 (PDE6B Exon 21, Irish Setter Variant)	Clear
Progressive Retinal Atrophy, rcd3 (PDE6A)	Clear
Proportionate Dwarfism (GH1 Exon 5, Chihuahua Variant)	Clear
Protein Losing Nephropathy, PLN (NPHS1)	Clear
Pyruvate Dehydrogenase Deficiency (PDP1, Spaniel Variant)	Clear
Pyruvate Kinase Deficiency (PKLR Exon 5, Basenji Variant)	Clear
Pyruvate Kinase Deficiency (PKLR Exon 7, Beagle Variant)	Clear
Pyruvate Kinase Deficiency (PKLR Exon 10, Terrier Variant)	Clear
Pyruvate Kinase Deficiency (PKLR Exon 7, Labrador Retriever Variant)	Clear
Pyruvate Kinase Deficiency (PKLR Exon 7, Pug Variant)	Clear
Raine Syndrome (FAM20C)	Clear
Recurrent Inflammatory Pulmonary Disease, RIPD (AKNA, Rough Collie Variant)	Clear
Renal Cystadenocarcinoma and Nodular Dermatofibrosis (FLCN Exon 7)	Clear
Sensory Neuropathy (FAM134B, Border Collie Variant)	Clear
Severe Combined Immunodeficiency, SCID (PRKDC, Terrier Variant)	Clear
Severe Combined Immunodeficiency, SCID (RAG1, Wetterhoun Variant)	Clear
Shaking Puppy Syndrome (PLP1, English Springer Spaniel Variant)	Clear
Shar-Pei Autoinflammatory Disease, SPAID, Shar-Pei Fever (MTBP)	Clear

Registration: American Kennel Club (AKC)

DNA Test Report	Test Date: May 12th, 2023	embk.me/parker1255
OTHER RESULTS		
Skeletal Dysplasia 2, SD2 (COL1	1A2, Labrador Retriever Variant)	Clear
Skin Fragility Syndrome (PKP1, C	Chesapeake Bay Retriever Variant)	Clear
Spinocerebellar Ataxia (SCN8A,	Alpine Dachsbracke Variant)	Clear
Spinocerebellar Ataxia with Myc	okymia and/or Seizures (KCNJ10)	Clear
Spongy Degeneration with Cere	bellar Ataxia 1 (KCNJ10)	Clear
Spongy Degeneration with Cere	bellar Ataxia 2 (ATP1B2)	Clear
Stargardt Disease (ABCA4 Exon	28, Labrador Retriever Variant)	Clear
Succinic Semialdehyde Dehydro	ogenase Deficiency (ALDH5A1 Exon 7, Saluki Variant)	Clear
O Thrombopathia (RASGRP1 Exon	5, American Eskimo Dog Variant)	Clear
O Thrombopathia (RASGRP1 Exon	5, Basset Hound Variant)	Clear
O Thrombopathia (RASGRP1 Exon	8, Landseer Variant)	Clear
Trapped Neutrophil Syndrome, T	NS (VPS13B)	Clear
Ollrich-like Congenital Muscular	r Dystrophy (COL6A3 Exon 10, Labrador Retriever Variant)	Clear
Ollrich-like Congenital Muscular	r Dystrophy (COL6A1 Exon 3, Landseer Variant)	Clear
O Unilateral Deafness and Vestibu	lar Syndrome (PTPRQ Exon 39, Doberman Pinscher)	Clear
🔗 Urate Kidney & Bladder Stones ((SLC2A9)	Clear
🔗 Von Willebrand Disease Type I, T	Гуре∣∨WD (VWF)	Clear
⊘ Von Willebrand Disease Type II,	Type II vWD (VWF, Pointer Variant)	Clear

Registration: American Kennel Club (AKC)

DNA Test Report	Test Date: May 12th, 2023	embk.me/parker1255
OTHER RESULTS		
O Von Willebrand Disease Type II	II, Type III vWD (VWF Exon 4, Terrier Variant)	Clear
🔗 Von Willebrand Disease Type II	II, Type III vWD (VWF Intron 16, Nederlandse Kooikerhondje Varian	nt) Clear
O Von Willebrand Disease Type II	II, Type III vWD (VWF Exon 7, Shetland Sheepdog Variant)	Clear
S X-Linked Hereditary Nephropat	thy, XLHN (COL4A5 Exon 35, Samoyed Variant 2)	Clear
S-Linked Myotubular Myopathy	y (MTM1, Labrador Retriever Variant)	Clear
⊘ X-Linked Progressive Retinal A	Atrophy 1, XL-PRA1 (RPGR)	Clear
S X-linked Severe Combined Imn	munodeficiency, X-SCID (IL2RG Exon 1, Basset Hound Variant)	Clear
⊘ X-linked Severe Combined Imn	munodeficiency, X-SCID (IL2RG, Corgi Variant)	Clear
⊘ Xanthine Urolithiasis (XDH, Mix	xed Breed Variant)	Clear
🧭 β-Mannosidosis (MANBA Exon	16, Mixed-Breed Variant)	Clear
Registration: American Kennel Club (AKC)		

Kembark

32%

embk.me/parker1255

INBREEDING AND DIVERSITY

CATEGORY

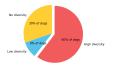
Coefficient Of Inbreeding

Our genetic COI measures the proportion of your dog's genome where the genes on the mother's side are identical by descent to those on the father's side.

MHC Class II - DLA DRB1

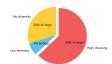
A Dog Leukocyte Antigen (DLA) gene, DRB1 encodes a major histocompatibility complex (MHC) protein involved in the immune response. Some studies have shown associations between certain DRB1 haplotypes and autoimmune diseases such as Addison's disease (hypoadrenocorticism) in certain dog breeds, but these findings have yet to be scientifically validated.

MHC Class II - DLA DQA1 and DQB1


DQA1 and DQB1 are two tightly linked DLA genes that code for MHC proteins involved in the immune response. A number of studies have shown correlations of DQA-DQB1 haplotypes and certain autoimmune diseases; however, these have not yet been scientifically validated.

RESULT

Your Days COI: 32%


High Diversity

How common is this amount of diversity in purebreds:

High Diversity

How common is this amount of diversity in purebreds:

